밑바닥부터 시작하는 딥러닝

ML & DL

[밑시딥2] Chapter 8. 어텐션

해당 포스팅은 '밑바닥부터 시작하는 딥러닝2'를 공부하고 정리, 요약한 글입니다. 모든 내용은 해당 도서를 기준으로 합니다.  ◼️8.1 어텐션의 구조seq2seq를 한층 더 강력하게 하는 어텐션 메커니즘 아이디어를 소개한다.이 어텐션이라는 메커니즘 덕분에 seq2seq는 필요한 정보에만 주목할 수 있게 된다.  ◾ 8.1.1 seq2seq의 문제점seq2seq에서는 Encoder가 시계열 데이터를 인코딩한다. 인코딩된 정보를 Decoder로 전달하고 Encoder의 출력은 고정 길이의 벡터였다.고정 길이 벡터라 함은 입력 문장의 길이에 관계없이 항상 같은 길이의 벡터로 변환한다는 뜻이다.현재의 Encoder는 아무리 긴 문장이라도 고정 길이의 벡터로 변환하지만 이는 필요한 정보가 벡터에 다 담기지 못하..

ML & DL

[밑시딥2] Chapter 7. RNN을 사용한 문장 생성

해당 포스팅은 '밑바닥부터 시작하는 딥러닝2'를 공부하고 정리, 요약한 글입니다. 모든 내용은 해당 도서를 기준으로 합니다. ◼️ 7.1 언어 모델을 사용한 문장 생성◾ 7.1.1 RNN을 사용한 문장 생성의 순서앞 장에서의 LSTM 계층을 이용한 언어 모델은 아래 그림처럼 생겼다.  언어 모델은 다음과 같은 확률분포를 출력한다.언어 모델은 지금까지 주어진 단어들에서 다음에 출현하는 단어의 확률분포를 출력한다. 이 결과를 기초로 다음 생성하기 위해서는 확률이 가장 높은 단어를 선택하는 방법을 떠올릴 수 있다.확률이 가장 높은 단어를 선택할 뿐이므로 결과가 일정하게 정해지는 결정적인 방법이다. 또 확률적으로 선택하는 방법도 있다. 각 후보 단어의 확률에 맞게 선택하는 것으로 확률이 높은 단어는 선택되기 쉽..

ML & DL

[밑시딥2] Chapter 6. 게이트가 추가된 RNN

해당 포스팅은 '밑바닥부터 시작하는 딥러닝2'를 공부하고 정리, 요약한 글입니다. 모든 내용은 해당 도서를 기준으로 합니다. 요즘에는 앞 장의 단순한 RNN 대신 LSTM이나 GRU라는 계층이 주로 쓰인다. RNN이라고 하면 앞 장의 RNN이 아니라 LSTM을 가리키는 경우도 흔하다.LSTM이나 GRU에는 게이트라는 구조가 더해져 있는데 이 게이트 덕분에 시계열 데이터의 장기 의존 관계를 학습할 수 있다. ◼️ 6.1 RNN의 문제점RNN은 시계열 데이터의 장기 의존 관계를 학습하기 어렵다. BPTT에서 기울기 소실 혹은 기울기 폭발이 일어나기 때문이다. ◾ 6.1.1 RNN 복습RNN 계층은 시계열 데이터인 xt를 입력하면 ht를 출력한다. 이 ht는 RNN 계층의 은닉 상태라고 하여 과거 정보를 저장..

ML & DL

[밑시딥2] Chapter 3. word2vec

해당 포스팅은 '밑바닥부터 시작하는 딥러닝2'를 공부하고 정리, 요악한 글입니다. 모든 내용은 해당 도서를 기준으로 합니다. ◼️ 3.1 추론 기반 기법과 신경망단어를 벡터로 표현하는 방법은 통계 기반 기법과 추론 기반 기법이 있다. ◾ 3.1.1 통계 기반 기법의 문제점통계 기반 기법에서는 주변 단어의 빈도를 기초로 단어를 표현해왔으며 단어의 동시발생 행렬을 만들고 그 행렬에 SVD를 적용하여 밀집벡터를 얻었다.하지만 이 방식은 대규모 말뭉치를 다룰 때 문제가 발생한다. 어휘가 100만 개라면, 통계 기반 기법에서는 '100만x100만'이라는 거대한 행렬을 만드는데 이러한 행렬에 SVD를 적용하는 일은 현실적이지 않다.통계 기반 기법은 단 1회의 처리(SVD 등)만에 단어의 분산 표현을 얻는다.추론 기..

ML & DL

[밑시딥2] Chapter 1. 신경망 복습

해당 포스팅은 '밑바닥부터 시작하는 딥러닝2'를 공부하고 정리, 요약한 글입니다. 모든 내용은 해당 도서를 기준으로 합니다. ◼️ 1.1 수학과 파이썬 복습◾ 1.1.1 벡터와 행렬벡터는 키기와 방향을 가진 양이며 파이썬에서는 1차원 배열로 취급할 수 있다.행렬은 숫자가 2차원 형태(사각형 형상)로 늘어선 것이다.그림 1-1처럼 벡터는 2차원 배열로, 행렬은 2차원 배열로 표현할 수 있다. 행렬에서 가로줄을 행(row)라고 하고 세로줄을 열(column)이라고 한다. 벡터는 표현하는 방법이 두가지 인데, 하나는 숫자들을 세로로 나열하는 방법(열벡터)이고 또 하나는 가로로 나열하는 방법(행벡터)이다.  ◾ 1.1.2 행렬의 원소별 연산import numpy as npW = np.array([[1, 2, 3..

ML & DL

[밑시딥1] Chapter 8. 딥러닝

해당 포스팅은 '밑바닥부터 시작하는 딥러닝1'을 공부하고 정리, 요약한 글입니다. 모든 내용은 해당 도서를 기준으로 합니다. ◼️ 8.1 더 깊게 ◾ 8.1.1 더 깊은 신경망 그림 8-1과 같이 구성된 CNN을 만들고자 한다. 여기에서 사용하는 합성곱 계층은 모두 3x3 크기의 작은 필터로 층이 깊어지면서 채널 수가 더 늘어나는 것이 특징이다. 합성곱 계층의 채널 수는 앞 계층에서부터 순서대로 16, 16, 32, 32, 64, 64로 늘어간다. 그림과 같이 풀링 계층을 추가하여 중간 데이터의 공간 크기를 점차 줄여가고 마지막 단의 완전 연결 계층에서는 드롭 아웃 계층을 사용한다. 가중치 초깃값으로 He 초깃값을 사용하고 가중치 매개변수 갱신에는 Adam을 이용한다. import sys, os impo..

ML & DL

[밑시딥1] Chapter 6. 학습 관련 기술

해당 포스팅은 '밑바닥부터 시작하는 딥러닝1'을 공부하고 정리, 요약한 글입니다. 모든 내용은 해당 도서를 기준으로 합니다. ◼️ 6.1 매개변수 갱신 ◾ 6.1.3 SGD 단점 SGD는 매개변수의 기울기를 구해 기울어진 방향으로 매개변수 값을 갱신하는 일을 몇 번이고 반복해서 최적의 값에 다가갔다. SGD는 단순하고 구현도 쉽지만 비효율적일 때가 있다. 식 6.2는 그림 6-1의 왼쪽처럼 밥그릇을 x축 방향으로 늘인 모습이며 실제로 등고선은 오른쪽과 같이 x축 방향으로 늘인 타원으로 되어 있다. 식 6.2의 기울기를 그려보면 그림 6-2처럼 된다. 이 기울기는 y축 방향은 크고 x축 방향은 작다는 것이 특징이다. SGD는 그림 6-3과 같은 심하게 굽이진 움직임을 보여주는데 이는 비효율적인 움직임이다...

ML & DL

[밑시딥1] Chapter 5. 오차역전파

해당 포스팅은 '밑바닥부터 시작하는 딥러닝1'을 공부하고 정리, 요약한 글입니다. 모든 내용은 해당 도서를 기준으로 합니다. ◼️ 5.1 계산그래프 계산 그래프는 계산 과정을 그래프로 나타낸 것이다. 그래프는 그래프 자료 구조로 복수의 노드와 에지로 표현된다. ◾ 5.1.1 계산 그래프로 풀다 계산 그래프는 계산 과정을 노드와 화살표로 표현한다. 노드는 원으로 표기하고 원 안에 연산 내용을 적는다. 그림 5-1에서는 x2와 x1.1을 각각 하나의 연산으로 취급해 원 안에 표기했지만 곱셈인 x만 연산으로 생각할 수도 있다. 그렇게 되면 그림 5-2처럼 2와 1.1은 각각 사과의 개수와 소비세 변수가 되어 원 밖에 표기하게 된다. 계산 그래프는 왼쪽에서 오른쪽으로 계산을 진행하며 이를 순전파라고 한다. 반대..

ML & DL

[밑시딥1] Chapter 4. 신경망 학습

해당 포스팅은 '밑바닥부터 시작하는 딥러닝1'을 공부하고 정리, 요약한 글입니다. 모든 내용은 해당 도서 기준입니다. ◾ 4.1 데이터에서 학습 이번 장의 주제는 신경망의 학습이다. 여기서 학습이란 훈련 데이터로부터 가중치 매개변수의 최적값을 자동으로 획득하는 것을 의미한다. 또, 신경망의 특징은 데이터를 보고 학습할 수 있다는 점이다. ▪️ 4.1.1 데이터 주도 학습 기계학습은 데이터가 생명이다. 데이터에서 답을 찾고 데이터에서 패턴을 발견하고 데이터로 이가리르 만드는 것이 기계학습이다. 그래서 기계학습의 중심에는 데이터가 존재한다. 기계학습에서는 사람의 개입을 최소화하고 수집한 데이터로부터 패턴을 찾으려 시도한다. 게다가 신경망과 딥러닝은 기존 기계학습에서 사용하던 방법보다 사람의 개입을 더욱 배제..

ML & DL

[밑시딥1] Chapter 2. 퍼셉트론

해당 포스팅은 '밑바닥부터 시작하는 딥러닝1'을 공부하고 정리, 요약한 글입니다. 모든 내용은 해당 도서 기준입니다. ◾ 2.1 퍼셉트론 퍼셉트론은 다수의 신호를 입력으로 받아 하나의 신호를 출력한다. 여기서는 1을 신호가 흐르는 것으로, 0을 신호가 흐르지 않는 것으로 사용한다. 그림 2-1은 입력으로 2개의 신호를 받은 퍼셉트론의 예이다. x1과 x2는 입력 신호, y는 출력 신호, w1과 w2는 가중치를 의미한다. 그림에서 원을 뉴런 혹은 노드라고 부른다. 입력 신호가 뉴런에 보내질 때는 각각의 고유한 가중치가 곱해진다. 뉴런에서 보내온 신호의 총합이 정해진 한계(임계값, θ)를 넘어설 때만 1을 출력하며 이를 뉴런이 활성화한다 라고 표현하기도 한다. 이를 수식으로 나타내면 식 2.1과 같다. 퍼셉..

토오오끼
'밑바닥부터 시작하는 딥러닝' 태그의 글 목록