StrongSORT: Make DeepSORT Great Again, Yunhao Du et al., 2022을 읽고 요약한 글입니다. ⏹️ Abstract 기존의 다중 객체 추적(MOT) 방법은 tracking-by-detection 및 joint-detection-association paradigm으로 분류할 수 있다. 후자가 더 많은 관심을 끌었고 전자에 비해 비슷한 성능을 보여주었지만, 본 논문은 tracking-by-detection paradigm이 여전히 tracking 정확도 측면에서 최적의 솔루션이라고 주장한다. 본 논문에서는 classic tracker DeepSort를 다시 살펴보고 detection, embedding 및 association 등 다양한 측면에서 업그레이드 한다(S..
SIMPLE ONLINE AND REALTIME TRACKING WITH A DEEP ASSOCIATION METRIC, Nicolai Wojke et al., 2017(DeepSORT)을 읽고 요약한 글입니다. ⏹️ Abstract 단순 온라인 및 실시간 추적(SORT)은 단순하고 효과적인 알고리즘에 초점을 맞춘 다중 객체 추적(MOT)에 대한 실용적인 접근법이다. 본 논문에서는 SORT의 성능을 향상 시키기 위해 외관(appearance) 정보를 통합한다. 이로 인해 더 오래 occlusion된 객체를 추적할 수 있어 ID 스위치의 횟수를 효과적으로 줄일 수 있다. 본 논문은 visual appearance space에서 가장 가까운 이웃 쿼리를 사용하여 measurement-to-track asso..
SIMPLE ONLINE AND REALTIME TRACKING, Alex Bewley et al., 2017을 읽고 요약한 글입니다. ⏹️ Abstract 본 논문은 온라인 및 실시간 응용 프로그램에 대해 객체를 효율적으로 연결하는 것이 중점인 다중 객체 추적(MOT)에 대한 실용적인 접근 방식을 탐구한다. 이를 위해 detection quality는 tracking 성능에 영향을 미치는 핵심 요소로, detector를 변경하면 tracking을 최대 18.9%까지 개선할 수 있다. track 구성 요소에 칼만 필터와 헝가리안 알고리즘과 같은 기본적인 조합만 사용했음에도 불구하고, 이 접근 방식은 최첨단 온라인 tracker에 맞먹는 정확도를 달성한다. 또한 tracking 방법이 간단하기 때문에 tr..
⏹ Contrastive learning이란? Contrastive learning이란 self-supervised learning(자기 주도 학습)의 주된 학습 방법으로 데이터들 간의 특정한 기준에 의해 유사도를 측정하기 위해 샘플 데이터 간의 비교를 통해 학습된 표현 공간(representation space) 상에서 비슷한 데이터는 가깝게, 다른 데이터는 멀게 존재하도록 표현 공간(representation space) 을 학습하는 것이다. ➡ Self-supervised learning 비지도학습의 한 분야에 속하는 방법으로 스스로 supervision을 주는 방법으로 라벨링이 되어 있지 않은 데이터로 학습을 진행한다. positive pair와 negative pair로 구성되며 입력쌍에 대해 ..