밑시딥

ML & DL

[밑시딥2] Chapter 8. 어텐션

해당 포스팅은 '밑바닥부터 시작하는 딥러닝2'를 공부하고 정리, 요약한 글입니다. 모든 내용은 해당 도서를 기준으로 합니다.  ◼️8.1 어텐션의 구조seq2seq를 한층 더 강력하게 하는 어텐션 메커니즘 아이디어를 소개한다.이 어텐션이라는 메커니즘 덕분에 seq2seq는 필요한 정보에만 주목할 수 있게 된다.  ◾ 8.1.1 seq2seq의 문제점seq2seq에서는 Encoder가 시계열 데이터를 인코딩한다. 인코딩된 정보를 Decoder로 전달하고 Encoder의 출력은 고정 길이의 벡터였다.고정 길이 벡터라 함은 입력 문장의 길이에 관계없이 항상 같은 길이의 벡터로 변환한다는 뜻이다.현재의 Encoder는 아무리 긴 문장이라도 고정 길이의 벡터로 변환하지만 이는 필요한 정보가 벡터에 다 담기지 못하..

ML & DL

[밑시딥2] Chapter 7. RNN을 사용한 문장 생성

해당 포스팅은 '밑바닥부터 시작하는 딥러닝2'를 공부하고 정리, 요약한 글입니다. 모든 내용은 해당 도서를 기준으로 합니다. ◼️ 7.1 언어 모델을 사용한 문장 생성◾ 7.1.1 RNN을 사용한 문장 생성의 순서앞 장에서의 LSTM 계층을 이용한 언어 모델은 아래 그림처럼 생겼다.  언어 모델은 다음과 같은 확률분포를 출력한다.언어 모델은 지금까지 주어진 단어들에서 다음에 출현하는 단어의 확률분포를 출력한다. 이 결과를 기초로 다음 생성하기 위해서는 확률이 가장 높은 단어를 선택하는 방법을 떠올릴 수 있다.확률이 가장 높은 단어를 선택할 뿐이므로 결과가 일정하게 정해지는 결정적인 방법이다. 또 확률적으로 선택하는 방법도 있다. 각 후보 단어의 확률에 맞게 선택하는 것으로 확률이 높은 단어는 선택되기 쉽..

ML & DL

[밑시딥2] Chapter 6. 게이트가 추가된 RNN

해당 포스팅은 '밑바닥부터 시작하는 딥러닝2'를 공부하고 정리, 요약한 글입니다. 모든 내용은 해당 도서를 기준으로 합니다. 요즘에는 앞 장의 단순한 RNN 대신 LSTM이나 GRU라는 계층이 주로 쓰인다. RNN이라고 하면 앞 장의 RNN이 아니라 LSTM을 가리키는 경우도 흔하다.LSTM이나 GRU에는 게이트라는 구조가 더해져 있는데 이 게이트 덕분에 시계열 데이터의 장기 의존 관계를 학습할 수 있다. ◼️ 6.1 RNN의 문제점RNN은 시계열 데이터의 장기 의존 관계를 학습하기 어렵다. BPTT에서 기울기 소실 혹은 기울기 폭발이 일어나기 때문이다. ◾ 6.1.1 RNN 복습RNN 계층은 시계열 데이터인 xt를 입력하면 ht를 출력한다. 이 ht는 RNN 계층의 은닉 상태라고 하여 과거 정보를 저장..

ML & DL

[밑시딥2] Chapter 5. 순환 신경망(RNN)

해당 포스팅은 '밑바닥부터 시작하는 딥러닝2'를 공부하고 정리, 요약한 글입니다. 모든 내용은 해당 도서를 기준으로 합니다. ◼️ 5.1 확률과 언어 모델◾ 5.1.1 word2vec을 확률 관점에서 바라보다지금까지 살펴본 신경망은 피드포워드라는 유형의 신경망이다. 피드포워드란 흐름이 단방향인 신경망을 말한다.입력 신호가 다음 층(중간층)으로 전달되고 그 신호를 받은 층은 그다음 층으로 전달하고 다시 다음 층으로.. 식으로 한 방향으로만 신호가 전달된다.시계열 데이터를 잘 다루지 못하는게 단점이기에 순환 신경망(RNN)이 등장하게 된다. CBOW 모델이 출력할 확률식은 다음과 같이 된다.위 식을 교차 엔트로피 오차에 의해 유도한 결과는 다음처럼 쓸 수 있다.CBOW 모델의 학습으로 수행하는 일은 위의 손..

ML & DL

[밑시딥2] Chapter 4. word2vec 속도 개선

해당 포스팅은 '밑바닥부터 시작하는 딥러닝2'를 공부하고 정리, 요약한 글입니다. 모든 내용은 해당 도서를 기준으로 합니다. ◼️ 4.1 word2vec 개선 1위 그림과 같이 CBOW 모델은 단어 2개를 맥락으로 사용해 이를 바탕으로 하나의 단어를 추측한다. 이때 입력 측 가중치와의 행렬 곱으로 은닉층이 계산되고 다시 출력 측 가중치와의 행렬 곱으로 각 단어의 점수를 구한다.이 점수에 소프트맥스 함수를 적용해 각 단어의 출현 확률을 얻고 이 확률을 정답 레이블과 비교하여 손실을 구한다. 위 그림에서 보듯 입력층과 출력층에는 각 100만 개의 뉴런이 존재한다. 이 수많은 뉴런 때문에 중간 계산에 많은 시간이 소요되며 다음 두 계산이 병목이 된다.- 입력층의 원핫 표현과 가중치 행렬 Win의 곱 계산.- ..

ML & DL

[밑시딥2] Chapter 3. word2vec

해당 포스팅은 '밑바닥부터 시작하는 딥러닝2'를 공부하고 정리, 요악한 글입니다. 모든 내용은 해당 도서를 기준으로 합니다. ◼️ 3.1 추론 기반 기법과 신경망단어를 벡터로 표현하는 방법은 통계 기반 기법과 추론 기반 기법이 있다. ◾ 3.1.1 통계 기반 기법의 문제점통계 기반 기법에서는 주변 단어의 빈도를 기초로 단어를 표현해왔으며 단어의 동시발생 행렬을 만들고 그 행렬에 SVD를 적용하여 밀집벡터를 얻었다.하지만 이 방식은 대규모 말뭉치를 다룰 때 문제가 발생한다. 어휘가 100만 개라면, 통계 기반 기법에서는 '100만x100만'이라는 거대한 행렬을 만드는데 이러한 행렬에 SVD를 적용하는 일은 현실적이지 않다.통계 기반 기법은 단 1회의 처리(SVD 등)만에 단어의 분산 표현을 얻는다.추론 기..

ML & DL

[밑시딥2] Chapter 2. 자연어와 단어의 분산 표현

해당 포스팅은 '밑바닥부터 시작하는 딥러닝2'를 공부하고 정리, 요약한 글입니다. 모든 내용은 해당 도서를 기준으로 합니다.◼️ 2.1  자연어 처리란한국어와 영어 등 우리가 평소에 쓰는 말을 자연어라고 한다.자연어처리(Natural Language Processing, NLP)를 문자 그대로 해석하면 '자연어를 처리하는 분야'이고 우리의 말을 컴퓨터에게 이해시키기 위한 기술이다.  ◼️ 2.2 시소러스시소러스란 유의어 사전으로 '뜻이 같은 단어(동의어)'나 '뜻이 비슷한 단어(유의어)'가 한 그룹으로 분류되어 있다.자연어 처리에 이용되는 시소러스에서는 단어 사이의 '상위와 하위' 혹은 '전체와 부분' 등 더 세세한 관곆ㅏ지 정의해둔 경우가 있다. 모든 단어에 대한 유의어 집합을 만든 다음 단어들의 관계..

ML & DL

[밑시딥2] Chapter 1. 신경망 복습

해당 포스팅은 '밑바닥부터 시작하는 딥러닝2'를 공부하고 정리, 요약한 글입니다. 모든 내용은 해당 도서를 기준으로 합니다. ◼️ 1.1 수학과 파이썬 복습◾ 1.1.1 벡터와 행렬벡터는 키기와 방향을 가진 양이며 파이썬에서는 1차원 배열로 취급할 수 있다.행렬은 숫자가 2차원 형태(사각형 형상)로 늘어선 것이다.그림 1-1처럼 벡터는 2차원 배열로, 행렬은 2차원 배열로 표현할 수 있다. 행렬에서 가로줄을 행(row)라고 하고 세로줄을 열(column)이라고 한다. 벡터는 표현하는 방법이 두가지 인데, 하나는 숫자들을 세로로 나열하는 방법(열벡터)이고 또 하나는 가로로 나열하는 방법(행벡터)이다.  ◾ 1.1.2 행렬의 원소별 연산import numpy as npW = np.array([[1, 2, 3..

ML & DL

[밑시딥1] Chapter 8. 딥러닝

해당 포스팅은 '밑바닥부터 시작하는 딥러닝1'을 공부하고 정리, 요약한 글입니다. 모든 내용은 해당 도서를 기준으로 합니다. ◼️ 8.1 더 깊게 ◾ 8.1.1 더 깊은 신경망 그림 8-1과 같이 구성된 CNN을 만들고자 한다. 여기에서 사용하는 합성곱 계층은 모두 3x3 크기의 작은 필터로 층이 깊어지면서 채널 수가 더 늘어나는 것이 특징이다. 합성곱 계층의 채널 수는 앞 계층에서부터 순서대로 16, 16, 32, 32, 64, 64로 늘어간다. 그림과 같이 풀링 계층을 추가하여 중간 데이터의 공간 크기를 점차 줄여가고 마지막 단의 완전 연결 계층에서는 드롭 아웃 계층을 사용한다. 가중치 초깃값으로 He 초깃값을 사용하고 가중치 매개변수 갱신에는 Adam을 이용한다. import sys, os impo..

ML & DL

[밑시딥1] Chapter 7. 합성곱 신경망(CNN)

해당 포스팅은 '밑바닥부터 시작하는 딥러닝1'을 공부하고 정리, 요한 글입니다. 모든 내용은 해당 도서를 기준으로 합니다. ◼️ 7.1 전체구조 지금까지 본 신경망은 인접하는 계층의 모든 뉴런과 결합되어 있다. 이를 완전 연결(fully-connected)이라고 하며 완전히 연결된 게층을 affine 계층이라는 이름으로 구현했다. CNN도 지금까지 본 신경망과 같이 레고 블록처럼 계층을 조합하여 만들 수 있다. 합성곱 계층(convolutional layer)과 풀링 계층(pooling layer)이 새롭게 등장한다. CNN에서는 새로운 합성곱 계층(conv)과 풀링 계층(pooling)이 추가 되며 CNN 계층은 Conv-FeLU-(Pooling) 흐름으로 연결된다. 지금까지의 Affine-ReLU 연..

토오오끼
'밑시딥' 태그의 글 목록